京东AI NLP高阶实训营-百度云

课程介绍

京东AI NLP高阶实训营(百万NLP算法工程师腾飞之路-基于京东真实场景及数据打造高阶实战训练营),课程官方售价25800元。

由京东人工智能平台部技术总监何云龙、京东AI数据专家张明、贪心学院CEO李文哲、贪心学院深度学习负责人袁源四位老师联合主讲,课程共17周培训课程,加配套资源与源码。

视频截图

京东AI NLP高阶实训营-百度云1

京东AI NLP高阶实训营-百度云2

京东AI NLP高阶实训营-百度云3

课程目录

  • week01 [4.82G]
  • 20200606Lecture [1.58G]
  • 1课程安排以及核心技能.mp4 [201.49M]
  • 2概论与常见基础任务.mp4 [251.34M]
  • 3分类问题,命名实体识别.mp4 [292.35M]
  • 4句法分析,语义理解与常见应用1.mp4 [232.04M]
  • 5常见应用2.mp4 [273.29M]
  • 6如何成为优秀的NLP人才.mp4 [370.95M]
  • 20200606Paper [462.43M]
  • paper 如何阅读-1.mp4 [271.99M]
  • paper 如何阅读-2.mp4 [190.43M]
  • 20200606Review1 [478.69M]
  • (案例) 自然语言处理应用场景以及常用的技术-1.mp4 [286.26M]
  • (案例) 自然语言处理应用场景以及常用的技术-2.mp4 [192.43M]
  • 20200606Review2 [722.94M]
  • (基础)工程师必须要懂的算法(时间空间)复杂度-1.mp4 [367.11M]
  • (基础)工程师必须要懂的算法(时间空间)复杂度-2.mp4 [355.83M]
  • 20200606Review3 [785.96M]
  • (基础)NLP工程师必须懂得算法 – 动态规划-1.mp4 [368.98M]
  • (基础)NLP工程师必须懂得算法 – 动态规划-2.mp4 [416.98M]
  • 20200606Review4 [863.41M]
  • DP动态规划 补课-1.mp4 [375.52M]
  • DP动态规划 补课-2.mp4 [124.51M]
  • DP动态规划 补课-3.mp4 [363.38M]
  • week02 [4.24G]
  • 20200613Lecture [2.02G]
  • 多分类文本处理与特征工程-1.mp4 [310.02M]
  • 多分类文本处理与特征工程-2.mp4 [132.41M]
  • 多分类文本处理与特征工程-3.mp4 [240.25M]
  • 多分类文本处理与特征工程-4.mp4 [240.83M]
  • 多分类文本处理与特征工程-5.mp4 [271.60M]
  • 多分类文本处理与特征工程-6.mp4 [214.77M]
  • 多分类文本处理与特征工程-7.mp4 [127.59M]
  • 多分类文本处理与特征工程-8.mp4 [188.41M]
  • 多分类文本处理与特征工程-9.mp4 [341.10M]
  • 20200613Paper [448.38M]
  • Distributed Representations-01.mp4 [166.28M]
  • Distributed Representations-02.mp4 [282.11M]
  • 20200613Review1 [483.13M]
  • 词向量的训练以及使用-1.mp4 [270.65M]
  • 词向量的训练以及使用-2.mp4 [212.48M]
  • 20200613Review2 [535.48M]
  • 编程环境的搭建-1.mp4 [264.28M]
  • 编程环境的搭建-2.mp4 [271.19M]
  • 20200613Review3 [812.38M]
  • Numpy, Pandas, Sklearn的使用基础-1.mp4 [414.34M]
  • Numpy, Pandas, Sklearn的使用基础-2.mp4 [398.04M]
  • week03 [4.09G]
  • 20200620lecture [1.21G]
  • 工业界模型训练和部署最佳实战-1.mp4 [221.07M]
  • 工业界模型训练和部署最佳实战-2.mp4 [203.08M]
  • 机器学习项目流程.mp4 [169.94M]
  • 逻辑回归.mp4 [390.13M]
  • 偏差与方差.mp4 [249.88M]
  • 20200620project [665.72M]
  • project-01.mp4 [294.77M]
  • project-2.mp4 [370.94M]
  • 20200620review1 [487.99M]
  • (实战)数据不平衡的处理-1.mp4 [192.61M]
  • (实战)数据不平衡的处理-2.mp4 [295.38M]
  • 20200620review2 [553.64M]
  • (基础)SkipGram模型讲解-1.mp4 [239.19M]
  • (基础)SkipGram模型讲解-2.mp4 [314.45M]
  • 20200620review3 [737.77M]
  • (实战)工程代码编写-1.mp4 [255.88M]
  • (实战)工程代码编写-2.mp4 [302.88M]
  • (实战)工程代码编写-3.mp4 [179.02M]
  • 20200621paper [504.21M]
  • Paper-1.mp4 [280.72M]
  • Paper-2.mp4 [223.49M]
  • week04 [3.19G]
  • 20200704Lecture [1.01G]
  • 常用的分类算法-1.mp4 [291.46M]
  • 常用的分类算法-2.mp4 [283.05M]
  • 常用的分类算法-3.mp4 [227.61M]
  • 常用的分类算法-4.mp4 [229.45M]
  • 20200704paper [388.48M]
  • Visualizing and understandi-1.mp4 [295.70M]
  • Visualizing and understandi-2.mp4 [92.78M]
  • 20200704review1 [452.18M]
  • (前沿技术) 多模态文本分类技术-1.mp4 [229.11M]
  • (前沿技术) 多模态文本分类技术-2.mp4 [223.07M]
  • 20200704review2 [661.57M]
  • (实战)Pytorch的使用-1.mp4 [255.66M]
  • (实战)Pytorch的使用-2.mp4 [405.90M]
  • 20200704review3 [732.52M]
  • (实战)常用的卷积神经网络-1.mp4 [249.59M]
  • (实战)常用的卷积神经网络-2.mp4 [258.80M]
  • (实战)常用的卷积神经网络-3.mp4 [224.13M]
  • week05 [3.20G]
  • 20200711lecture [859.23M]
  • 递归神经网络-1.mp4 [257.45M]
  • 递归神经网络-2.mp4 [191.74M]
  • 递归神经网络-3.mp4 [227.14M]
  • 递归神经网络-4.mp4 [182.90M]
  • 20200711paper [373.95M]
  • paper1.mp4 [230.41M]
  • paper2.mp4 [143.54M]
  • 20200711review1 [414.04M]
  • GPU计算-1.mp4 [193.64M]
  • GPU计算-2.mp4 [220.40M]
  • 20200711review2 [917.25M]
  • (代码讲解)实现基于LSTM的情感分类-1.mp4 [330.35M]
  • (代码讲解)实现基于LSTM的情感分类-2.mp4 [371.02M]
  • (代码讲解)实现基于LSTM的情感分类-3.mp4 [215.87M]
  • 20200711review3 [709.27M]
  • 基于LSTM语言模型的代码生成-1.mp4 [348.99M]
  • 基于LSTM语言模型的代码生成-2.mp4 [360.28M]
  • week06 [3.28G]
  • 0716图书分类项目讲解 [832.08M]
  • 图书分类项目讲解-1.mp4 [358.18M]
  • 图书分类项目讲解-2.mp4 [272.30M]
  • 图书分类项目讲解-3.mp4 [201.59M]
  • 0717智能营销项目 [399.23M]
  • 智能营销项目说明-1.mp4 [247.57M]
  • 智能营销项目说明-2.mp4 [151.66M]
  • 0718lecture [569.27M]
  • 基于Seq2Seq的文本生成-1.mp4 [395.64M]
  • 基于Seq2Seq的文本生成-2.mp4 [173.63M]
  • 0718review1 [243.31M]
  • 基于Seq2Seq的文本生成-3.mp4 [243.31M]
  • 0718review2 [905.12M]
  • 基于Seq2Seq的机器翻译系统-1.mp4 [273.17M]
  • 基于Seq2Seq的机器翻译系统-2.mp4 [387.51M]
  • 基于Seq2Seq的机器翻译系统-3.mp4 [244.44M]
  • 0719paper [405.12M]
  • Named Entity Recognition-1.mp4 [225.12M]
  • Named Entity Recognition-2.mp4 [126.00M]
  • Named Entity Recognition-3.mp4 [54.00M]
  • week07 [2.53G]
  • 0725lecture [1.40G]
  • Pointer Network以及Beam Search-1.mp4 [264.69M]
  • Pointer Network以及Beam Search-2.mp4 [422.36M]
  • Pointer Network以及Beam Search-3.mp4 [330.11M]
  • Pointer Network以及Beam Search-4.mp4 [418.83M]
  • 0725project [525.16M]
  • 智能营销项目手把手教学-1.mp4 [240.94M]
  • 智能营销项目手把手教学-2.mp4 [284.22M]
  • 0725review [631.58M]
  • 营销文案生成论文-1.mp4 [140.64M]
  • 营销文案生成论文-2.mp4 [136.93M]
  • 营销文案生成论文-3.mp4 [136.93M]
  • 营销文案生成论文-4.mp4 [217.09M]
  • week08 [2.99G]
  • 0801_lecture [0.99G]
  • 深度学习训练技巧-神经网络模型的问题-1.mp4 [290.33M]
  • 深度学习训练技巧-神经网络模型的问题-2.mp4 [152.54M]
  • 文本领域中的数据增强技术-1.mp4 [243.91M]
  • 文本领域中的数据增强技术-2.mp4 [330.05M]
  • 0802-项目教学 [733.44M]
  • 智能营销项目教学-1.mp4 [561.27M]
  • 智能营销项目教学-2.mp4 [172.17M]
  • week09 [1.48G]
  • lecture [905.35M]
  • 20200815 NLP Lecture 对话系统中的核心1.mp4 [266.07M]
  • 20200815 NLP Lecture 对话系统中的核心2.mp4 [257.91M]
  • 20200815 NLP Lecture 对话系统中的核心3.mp4 [163.10M]
  • 20200815 NLP Lecture 对话系统中的核心4.mp4 [218.27M]
  • project [612.59M]
  • 20200816 NLP Review 智能营销项目1.mp4 [215.25M]
  • 20200816 NLP Review 智能营销项目2.mp4 [249.22M]
  • 20200816 NLP Review 智能营销项目3.mp4 [148.12M]
  • week10 [1.46G]
  • 822-Lecture [813.72M]
  • 检索模型-1.mp4 [349.88M]
  • 检索模型-2.mp4 [192.36M]
  • 检索模型-3.mp4 [271.48M]
  • workshop_20200903_210612 [513.42M]
  • HNSW papers讲解-1.mp4 [233.96M]
  • HNSW papers讲解-2.mp4 [279.45M]
  • 项目3作业布置 [163.28M]
  • 项目三布置.mp4 [163.28M]
  • week11 [388.20M]
  • 最⻓公共⼦串和最⻓公共⼦序列的动态规划实现.mp4 [388.20M]
  • week12 [2.06G]
  • 20200905Lecture [716.58M]
  • ⾃注意⼒机制以及Transformer-1.mp4 [237.55M]
  • ⾃注意⼒机制以及Transformer-2.mp4 [264.56M]
  • ⾃注意⼒机制以及Transformer-3.mp4 [214.48M]
  • 20200905Workshop [924.61M]
  • Transformer的代码实现-1.mp4 [271.26M]
  • Transformer的代码实现-2.mp4 [408.39M]
  • Transformer的代码实现-3.mp4 [244.96M]
  • 20200906 Workshop2 [112.34M]
  • Paper _transformer.mp4 [112.34M]
  • 20200906 Workshop3 [358.13M]
  • 作业3-1讲解.mp4 [358.13M]
  • week13 [2.51G]
  • 20200912lecture [970.01M]
  • 基于BERT和Transformer的闲聊引擎-1.mp4 [251.30M]
  • 基于BERT和Transformer的闲聊引擎-2.mp4 [348.93M]
  • 基于BERT和Transformer的闲聊引擎-3.mp4 [369.78M]
  • 20200913workshop1 [1.09G]
  • BERT的fine-tuning实例讲解-01.mp4 [488.34M]
  • BERT的fine-tuning实例讲解-02.mp4 [625.20M]
  • 20200913workshop2 [488.34M]
  • 项目3-1讲解 项目3-2布置.mp4 [488.34M]
  • week14 [2.98G]
  • 20200919lecture [1.59G]
  • XLNet, ALBERT以及应⽤-1.mp4 [169.59M]
  • XLNet, ALBERT以及应⽤-2.mp4 [200.34M]
  • XLNet, ALBERT以及应⽤-3.mp4 [325.34M]
  • XLNet, ALBERT以及应⽤-4.mp4 [235.09M]
  • XLNet, ALBERT以及应⽤-5.mp4 [317.96M]
  • XLNet, ALBERT以及应⽤-6.mp4 [376.37M]
  • 20200919workshop1 [1.03G]
  • ALBERT论文讲解.mp4 [355.96M]
  • XLNet论文讲解-1.mp4 [317.96M]
  • XLNet论文讲解-2.mp4 [376.37M]
  • 20200920workshop2 [378.08M]
  • 作业3-2讲解.mp4 [378.08M]
  • week15 [1.07G]
  • 20200926Lecture [1.07G]
  • 模型压缩-1.mp4 [203.20M]
  • 模型压缩-2.mp4 [441.06M]
  • 模型压缩-3.mp4 [448.05M]
  • week16 [2.02G]
  • 20201017 Lecture 对话管理-1.mp4 [279.67M]
  • 20201017 Lecture 对话管理-2.mp4 [347.96M]
  • 20201017 Lecture 对话管理-3.mp4 [310.81M]
  • 20201018 Workshop paper解读:Transferable-1.mp4 [258.14M]
  • 20201018 Workshop paper解读:Transferable-2.mp4 [276.77M]
  • 20201020 workshop 项目作业3-3第二部分.mp4 [258.80M]
  • 20201020 workshop 项目作业3-3第一部分.mp4 [337.04M]
  • week17 [800.08M]
  • 20201023 Workshop 就业指导-1.mp4 [277.90M]
  • 20201023 Workshop 就业指导-2.mp4 [295.86M]
  • 20201023 Workshop 就业指导-3.mp4 [226.32M]
  • ......
  • ........
  • 资料 [3.55G]
  • ............
  • .............

发表评论

后才能评论

本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。

最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。 若排除这种情况,可在对应资源底部留言,或联络我们。

对于会员专享、整站源码、程序插件、网站模板、网页模版等类型的素材,文章内用于介绍的图片通常并不包含在对应可供下载素材包内。这些相关商业图片需另外购买,且本站不负责(也没有办法)找到出处。 同样地一些字体文件也是这种情况,但部分素材会在素材包内有一份字体下载链接清单。

如果您已经成功付款但是网站没有弹出成功提示,请联系站长提供付款信息为您处理

源码素材属于虚拟商品,具有可复制性,可传播性,一旦授予,不接受任何形式的退款、换货要求。请您在购买获取之前确认好 是您所需要的资源